lundi 7 novembre 2016

FLOVENT DISKUS (Fluticasone Propionate) Powder, Metered [GlaxoSmithKline LLC]

5.1 Local Effects of Inhaled Corticosteroids

In clinical trials, the development of localized infections of the mouth and pharynx with Candida albicans has occurred in subjects treated with FLOVENT DISKUS. When such an infection develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while treatment with FLOVENT DISKUS continues, but at times therapy with FLOVENT DISKUS may need to be interrupted. Advise the patient to rinse his/her mouth with water without swallowing following inhalation to help reduce the risk of oropharyngeal candidiasis.

5.2 Acute Asthma Episodes

FLOVENT DISKUS is not to be regarded as a bronchodilator and is not indicated for rapid relief of bronchospasm. Patients should be instructed to contact their physicians immediately when episodes of asthma that are not responsive to bronchodilators occur during the course of treatment with FLOVENT DISKUS. During such episodes, patients may require therapy with oral corticosteroids.

5.3 Immunosuppression

Persons who are using drugs that suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in susceptible children or adults using corticosteroids. In such children or adults who have not had these diseases or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If a patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chickenpox develops, treatment with antiviral agents may be considered.

Inhaled corticosteroids should be used with caution, if at all, in patients with active or quiescent tuberculosis infections of the respiratory tract; systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex.

5.4 Transferring Patients from Systemic Corticosteroid Therapy

Particular care is needed for patients who have been transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in patients with asthma during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function.

Patients who have been previously maintained on 20 mg or more of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn. During this period of HPA suppression, patients may exhibit signs and symptoms of adrenal insufficiency when exposed to trauma, surgery, or infection (particularly gastroenteritis) or other conditions associated with severe electrolyte loss. Although FLOVENT DISKUS may control asthma symptoms during these episodes, in recommended doses it supplies less than normal physiological amounts of glucocorticoid systemically and does NOT provide the mineralocorticoid activity that is necessary for coping with these emergencies.

During periods of stress or a severe asthma attack, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids (in large doses) immediately and to contact their physicians for further instruction. These patients should also be instructed to carry a warning card indicating that they may need supplementary systemic corticosteroids during periods of stress or a severe asthma attack.

Patients requiring oral corticosteroids should be weaned slowly from systemic corticosteroid use after transferring to FLOVENT DISKUS. Prednisone reduction can be accomplished by reducing the daily prednisone dose by 2.5 mg on a weekly basis during therapy with FLOVENT DISKUS. Lung function (mean forced expiratory volume in 1 second [FEV1] or morning peak expiratory flow [AM PEF]), beta-agonist use, and asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition, patients should be observed for signs and symptoms of adrenal insufficiency, such as fatigue, lassitude, weakness, nausea and vomiting, and hypotension.

Transfer of patients from systemic corticosteroid therapy to FLOVENT DISKUS may unmask allergic conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, arthritis, eosinophilic conditions).

During withdrawal from oral corticosteroids, some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function.

5.5 Hypercorticism and Adrenal Suppression

Fluticasone propionate will often help control asthma symptoms with less suppression of HPA function than therapeutically equivalent oral doses of prednisone. Since fluticasone propionate is absorbed into the circulation and can be systemically active at higher doses, the beneficial effects of FLOVENT DISKUS in minimizing HPA dysfunction may be expected only when recommended dosages are not exceeded and individual patients are titrated to the lowest effective dose. A relationship between plasma levels of fluticasone propionate and inhibitory effects on stimulated cortisol production has been shown after 4 weeks of treatment with fluticasone propionate inhalation aerosol. Since individual sensitivity to effects on cortisol production exists, physicians should consider this information when prescribing FLOVENT DISKUS.

Because of the possibility of significant systemic absorption of inhaled corticosteroids in sensitive patients, patients treated with FLOVENT DISKUS should be observed carefully for any evidence of systemic corticosteroid effects. Particular care should be taken in observing patients postoperatively or during periods of stress for evidence of inadequate adrenal response.

It is possible that systemic corticosteroid effects such as hypercorticism and adrenal suppression (including adrenal crisis) may appear in a small number of patients who are sensitive to these effects. If such effects occur, FLOVENT DISKUS should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids, and other treatments for management of asthma symptoms should be considered.

5.6 Immediate Hypersensitivity Reactions

Immediate hypersensitivity reactions (e.g., urticaria, angioedema, rash, bronchospasm, hypotension), including anaphylaxis, may occur after administration of FLOVENT DISKUS. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of powder products containing lactose; therefore, patients with severe milk protein allergy should not use FLOVENT DISKUS [see Contraindications (4)].

5.7 Reduction in Bone Mineral Density

Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. The clinical significance of small changes in BMD with regard to long-term consequences such as fracture is unknown. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids), should be monitored and treated with established standards of care.

A 2-year trial in 160 subjects (females aged 18 to 40 years, males 18 to 50) with asthma receiving chlorofluorocarbon (CFC)-propelled fluticasone propionate inhalation aerosol 88 or 440 mcg twice daily demonstrated no statistically significant changes in BMD at any time point (24, 52, 76, and 104 weeks of double-blind treatment) as assessed by dual-energy x-ray absorptiometry at lumbar regions L1 through L4.

5.8 Effect on Growth

Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to pediatric patients. Monitor the growth of pediatric patients receiving FLOVENT DISKUS routinely (e.g., via stadiometry). To minimize the systemic effects of orally inhaled corticosteroids, including FLOVENT DISKUS, titrate each patient’s dosage to the lowest dosage that effectively controls his/her symptoms [see Dosage and Administration (2), Use in Specific Populations (8.4)].

5.9 Glaucoma and Cataracts

Glaucoma, increased intraocular pressure, and cataracts have been reported in patients following the long-term administration of inhaled corticosteroids, including fluticasone propionate. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts.

5.10 Paradoxical Bronchospasm

As with other inhaled medicines, bronchospasm may occur with an immediate increase in wheezing after dosing. If bronchospasm occurs following dosing with FLOVENT DISKUS, it should be treated immediately with an inhaled, short-acting bronchodilator; FLOVENT DISKUS should be discontinued immediately; and alternative therapy should be instituted.

5.11 Drug Interactions with Strong Cytochrome P450 3A4 Inhibitors

The use of strong cytochrome P450 3A4 (CYP3A4) inhibitors (e.g., ritonavir, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, saquinavir, ketoconazole, telithromycin) with FLOVENT DISKUS is not recommended because increased systemic corticosteroid adverse effects may occur [see Drug Interactions (7.1), Clinical Pharmacology (12.3)].

5.12 Eosinophilic Conditions and Churg-Strauss Syndrome

In rare cases, patients on inhaled fluticasone propionate may present with systemic eosinophilic conditions. Some of these patients have clinical features of vasculitis consistent with Churg-Strauss syndrome, a condition that is often treated with systemic corticosteroid therapy. These events usually, but not always, have been associated with the reduction and/or withdrawal of oral corticosteroid therapy following the introduction of fluticasone propionate. Cases of serious eosinophilic conditions have also been reported with other inhaled corticosteroids in this clinical setting. Physicians should be alert to eosinophilia, vasculitic rash, worsening pulmonary symptoms, cardiac complications, and/or neuropathy presenting in their patients. A causal relationship between fluticasone propionate and these underlying conditions has not been established.

Close

Let's block ads! (Why?)

FLOVENT DISKUS (Fluticasone Propionate) Powder, Metered [GlaxoSmithKline LLC]

LIDOCAINE Ointment [Unit Dose Services]

To report SUSPECTED ADVERSE REACTIONS, contact Hi-Tech Pharmacal Co., Inc. at 1-800-262-9010 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

Adverse experiences following the administration of lidocaine are similar in nature to those observed with other amide local anesthetic agents. These adverse experiences are, in general, dose-related and may result from high plasma levels caused by excessive dosage or rapid absorption, or may result from a hypersensitivity, idiosyncrasy or diminished tolerance on the part of the patient. Serious adverse experiences are generally systemic in nature. The following types are those most commonly reported:

Central nervous system:

CNS manifestations are excitatory and/or depressant and may be characterized by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting, sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, respiratory depression and arrest. The excitatory manifestation may be very brief or may not occur at all, in which case the first manifestation of toxicity may be drowsiness merging into unconsciousness and respiratory arrest. Drowsiness following the administration of lidocaine is usually an early sign of a high blood level of the drug and may occur as a consequence of rapid absorption.

Cardiovascular system

Cardiovascular manifestations are usually depressant and are characterized by bradycardia, hypotension, and cardiovascular collapse, which may lead to cardiac arrest.

Allergic

Allergic reactions are characterized by cutaneous lesions, urticaria, edema or anaphylactoid reactions. Allergic reactions may occur as a result of sensitivity either to the local anesthetic agent or to other components in the formulation. Allergic reactions as a result of sensitivity to lidocaine are extremely rare and, if they occur, should be managed by conventional means. The detection of sensitivity by skin testing is of doubtful value.

Close

Let's block ads! (Why?)

LIDOCAINE Ointment [Unit Dose Services]

NIKZON HEMORRHOIDAL (Phenylephrine Hydrochloride, And Pramoxine Hydrochloride) Cream [Genoma Lab USA Inc]

Inactive ingredients

Aloe barbadensis leaf extract, Butylated hydroxytoluene, Cetostearyl alcohol, Cetyl esters, Cetyl palmitate, Distilled water, Glycerin, Glycerol monostearate, Isopropyl myristate, Lanolin, Methylparaben, Mineral oil, Polysorbate 60, Propylene glycol, Propylparaben, Sodium citrate hydrate, Stearic acid, Tocopherol acetate, White petrolatum

Close

Let's block ads! (Why?)

NIKZON HEMORRHOIDAL (Phenylephrine Hydrochloride, And Pramoxine Hydrochloride) Cream [Genoma Lab USA Inc]

vendredi 4 novembre 2016

AMOXICILLIN AND CLAVULANATE POTASSIUM Powder, For Suspension [Unit Dose Services]

12.1 Mechanism of Action

Amoxicillin and clavulanate potassium for oral suspension, 600 mg/42.9 mg per 5 ml is an antibacterial drug [see Microbiology (12.4)].

12.3 Pharmacokinetics

The pharmacokinetics of amoxicillin and clavulanate were determined in a study of 19 pediatric patients, 8 months to 11 years, given amoxicillin and clavulanate potassium for oral suspension, 600 mg/42.9 mg per 5 mL at an amoxicillin dose of 45 mg/kg q12h with a snack or meal. The mean plasma amoxicillin and clavulanate pharmacokinetic parameter values are listed in the following table.

1.
Arithmetic mean ± standard deviation, except T max values which are medians (ranges).

The effect of food on the oral absorption of amoxicillin and clavulanate potassium for oral suspension, 600 mg/42.9 mg per 5 mL has not been studied.

Approximately 50% to 70% of the amoxicillin and approximately 25% to 40% of the clavulanic acid are excreted unchanged in urine during the first 6 hours after administration of 10 mL of amoxicillin and clavulanate potassium, 250 mg/62.5 mg per 5 mL suspension.

Concurrent administration of probenecid delays amoxicillin excretion but does not delay renal excretion of clavulanic acid.

Neither component in amoxicillin and clavulanate potassium for oral suspension, 600 mg/42.9 mg per 5 mL is highly protein-bound; clavulanic acid has been found to be approximately 25% bound to human serum and amoxicillin approximately 18% bound.

Oral administration of a single dose of amoxicillin and clavulanate potassium for oral suspension, 600 mg/42.9 mg per 5 mL at 45 mg/kg (based on the amoxicillin component) to pediatric patients, 9 months to 8 years, yielded the following pharmacokinetic data for amoxicillin in plasma and middle ear fluid (MEF):

Table 2. Amoxicillin Concentrations in Plasma and Middle Ear Fluid Following Administration of 45 mg/kg of Amoxicillin and Clavulanate Potassium for Oral Suspension, 600 mg/42.9 mg per 5 mL to Pediatric Patients

Dose administered immediately prior to eating.

Amoxicillin diffuses readily into most body tissues and fluids with the exception of the brain and spinal fluid. The results of experiments involving the administration of clavulanic acid to animals suggest that this compound, like amoxicillin, is well distributed in body tissues.

12.4 Microbiology

Mechanism of Action
Amoxicillin binds to penicillin-binding proteins within the bacterial cell wall and inhibits bacterial cell wall synthesis. Clavulanic acid is a beta-lactam, structurally related to penicillin, that may inactivate certain beta-lactamase enzymes.

Mechanism of Resistance
Resistance to penicillins may be mediated by destruction of the beta-lactam ring by a beta-lactamase, altered affinity of penicillin for target, or decreased penetration of the antimicrobial drug to reach the target site. Amoxicillin alone is susceptible to degradation by beta-lactamases, and therefore its spectrum of activity does not include bacteria that produce these enzymes.

Amoxicillin/clavulanic acid has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section (1).

Gram-positive bacteria:

Streptococcus pneumoniae (including isolates with penicillin MICs ≤ 2 mcg/mL)

Gram-negative bacteria:

Haemophilus influenzae (including beta-lactamase–producing isolates)

Moraxella catarrhalis (including beta-lactamase–producing isolates)

The following in vitro data are available, but their clinical significance is unknown.

At least 90% of the following microorganisms exhibit in vitro minimum inhibitory concentrations (MICs) less than or equal to the susceptible breakpoint for amoxicillin/clavulanic acid. However, the safety and efficacy of amoxicillin/clavulanic acid in treating infections due to these microorganisms have not been established in adequate and well-controlled trials.

Gram-positive bacteria:

Staphylococcus aureus (including beta-lactamase–producing isolates)

Streptococcus pyogenes

Susceptibility Test Methods:When available, the clinical microbiology laboratory should provide cumulative results of in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting the most effective antimicrobial.

Dilution Technique: Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standard test method1,2 (broth for S. pneumoniae and H. influenzae). The recommended dilution pattern utilizes a constant amoxicillin/clavulanate potassium ratio of 2 to 1 in all tubes with varying amounts of amoxicillin. MICs are expressed in terms of the amoxicillin concentration in the presence of clavulanic acid at a constant 2 parts amoxicillin to 1 part clavulanic acid. The MIC values should be interpreted according to criteria provided in Table 3.

Diffusion Technique: Quantitative methods that require measurement of zone diameters also provides reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized test method 2,3. This procedure uses paper disks impregnated with 30 mcg amoxicillin/clavulanate potassium (20 mcg amoxicillin plus 10 mcg clavulanate potassium) to test susceptibility of microorganisms to amoxicillin/clavulanate potassium. Disk diffusion zone sizes should be interpreted according to criteria provided in Table 3.

S=Susceptible, I=Intermediate, R=Resistant

NOTE: Susceptibility of S. pneumoniae should be determined using a 1-mcg oxacillin disk.

NOTE: For nonmeningitis isolates, a penicillin MIC of ≤0.06 mcg/mL (or oxacillin zone ≥ 20 mm) can predict susceptibility to amoxicillin/clavulanic acid2.

NOTE: Beta-lactamase-negative, ampicillin-resistant (BLNAR) H. influenzae isolates should be considered resistant to amoxicillin/clavulanic acid despite apparent in vitro susceptibility of some BLNAR isolates to these agents.

A report of “Susceptible” (S) indicates that the antimicrobial drug is likely to inhibit growth of the microorganism if the antimicrobial drug reaches the concentration usually achievable at the site of infection. A report of “Intermediate” (I) indicates that the result should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinically feasible antimicrobials, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high doses of antimicrobial can be used. This category also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” (R) indicates that the antimicrobial is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the infection site; other therapy should be selected.

Quality Control: Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,3Standard amoxicillin/clavulanate potassium powder should provide the following range of MIC noted in Table 4. For the disk diffusion technique using the 30 mcg amoxicillin/clavulanate potassium disk, the criteria in Table 4 should be achieved.

Close

Let's block ads! (Why?)

AMOXICILLIN AND CLAVULANATE POTASSIUM Powder, For Suspension [Unit Dose Services]

HONEY LEMON COUGH DROPS (Menthol) Lozenge [Topco Associates]

Stop use and ask doctor if

cough persists for more than 7 days, tends to recur, or is accompanied by fever, rash, or persistent headache. These could be signs of a serious condition.

sore throat is severe, or irritation, pain or redness lasts or worsens

sore mouth does not improve in 7 days

Close

Let's block ads! (Why?)

HONEY LEMON COUGH DROPS (Menthol) Lozenge [Topco Associates]

HER LT297 STRAWBERRY LIMITED TOO SANITIZER KIT (Alcohol) Kit [HER ACCESSORIES]

To receive this label RSS feed

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2ealAlh

To receive all DailyMed Updates for the last seven days

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2111Ptd

What will I get with the DailyMed RSS feed?

DailyMed will deliver notification of updates and additions to Drug Label information currently shown on this site through its RSS feed.

DailyMed will deliver this notification to your desktop, Web browser, or e-mail depending on the RSS Reader you select to use. To view updated drug label links, paste the RSS feed address (URL) shown below into a RSS reader, or use a browser which supports RSS feeds, such as Safari for Mac OS X.

How to discontinue the RSS feed

If you no longer wish to have this DailyMed RSS service, simply delete the copied URL from your RSS Reader.

More about getting RSS News & Updates from DailyMed

Let's block ads! (Why?)

HER LT297 STRAWBERRY LIMITED TOO SANITIZER KIT (Alcohol) Kit [HER ACCESSORIES]

jeudi 3 novembre 2016

SIERRA SOFT ALCOHOL HAND SANITIZER (Ethyl Alcohol) Liquid [CWGC LA Inc.]

Why is DailyMed no longer displaying pill images on the Search Results and Drug Info pages?

Due to inconsistencies between the drug labels on DailyMed and the pill images provided by RxImage, we no longer display the RxImage pill images associated with drug labels.

We anticipate reposting the images once we are able identify and filter out images that do not match the information provided in the drug labels.

Let's block ads! (Why?)

SIERRA SOFT ALCOHOL HAND SANITIZER (Ethyl Alcohol) Liquid [CWGC LA Inc.]

NAPROXEN Tablet [REMEDYREPACK INC.]

Adverse reactions reported in controlled clinical trials in 960 patients treated for rheumatoid arthritis or osteoarthritis are listed below. In general, reactions in patients treated chronically were reported 2 to 10 times more frequently than they were in short-term studies in the 962 patients treated for mild to moderate pain or for dysmenorrhea. The most frequent complaints reported related to the gastrointestinal tract.

A clinical study found gastrointestinal reactions to be more frequent and more severe in rheumatoid arthritis patients taking daily doses of 1500 mg naproxen compared to those taking 750 mg naproxen (see CLINICAL PHARMACOLOGY).

In controlled clinical trials with about 80 pediatric patients and in well-monitored, open-label studies with about 400 pediatric patients with juvenile arthritis treated with naproxen, the incidence of rash and prolonged bleeding times were increased, the incidence of gastrointestinal and central nervous system reactions were about the same, and the incidence of other reactions were lower in pediatric patients than in adults.

In patients taking naproxen in clinical trials, the most frequently reported adverse experiences in approximately 1% to 10% of patients are:

Gastrointestinal (GI) Experiences, including: heartburn *, abdominal pain *, nausea *, constipation *, diarrhea, dyspepsia, stomatitis

Central Nervous System: headache *, dizziness *, drowsiness *, lightheadedness, vertigo

Dermatologic: pruritus (itching) *, skin eruptions *, ecchymoses *, sweating, purpura

Special Senses: tinnitus *, visual disturbances, hearing disturbances

Cardiovascular: edema *, palpitations.

General: dyspnea *, thirst

*Incidence of reported reaction between 3% and 9%. Those reactions occurring in less than 3% of the patients are unmarked.

In patients taking NSAIDs, the following adverse experiences have also been reported in approximately 1% to 10% of patients.

Gastrointestinal (GI) Experiences, including: flatulence, gross bleeding/perforation, GI ulcers (gastric/duodenal), vomiting

General: abnormal renal function, anemia, elevated liver enzymes, increased bleeding time, rashes

The following are additional adverse experiences reported in <1% of patients taking naproxen during clinical trials and through postmarketing reports. Those adverse reactions observed through postmarketing reports are italicized.

Body as a Whole: anaphylactoid reactions, angioneurotic edema, menstrual disorders, pyrexia (chills and fever)

Cardiovascular: congestive heart failure, vasculitis, hypertension, pulmonary edema

Gastrointestinal:inflammation, bleeding(sometimes fatal, particularly in the elderly), ulceration, perforation and obstruction of the upper and lower gastrointestinal tract. Esophagitis, stomatitis, hematemesis, pancreatitis, vomiting, colitis, exacerbation of inflammatory bowel disease (ulcerative colitis, Crohn’s disease).

Hepatobiliary: jaundice, abnormal liver function tests, hepatitis (some cases have been fatal)

Hemic and Lymphatic:eosinophilia, leucopenia, melena, thrombocytopenia, agranulocytosis, granulocytopenia, hemolytic anemia, aplastic anemia

Metabolic and Nutritional:hyperglycemia, hypoglycemia

Nervous System: inability to concentrate, depression, dream abnormalities, insomnia, malaise, myalgia, muscle weakness, aseptic meningitis, cognitive dysfunction, convulsions

Respiratory:eosinophilic pneumonitis, asthma

Dermatologic: alopecia, urticaria, skin rashes, toxic epidermal necrolysis, erythema multiforme, erythema nodosum, fixed drug eruption, lichen planus, pustular reaction, systemic lupus erythematosus, bullous reactions, including Stevens-Johnson syndrome, photosensitive dermatitis, photosensitivity reactions, including rare cases resembling porphyria cutanea tarda (pseudoporphyria) or epidermolysis bullosa. If skin fragility, blistering or other symptoms suggestive of pseudoporphyria occur, treatment should be discontinued and the patient monitored.

Special Senses:hearing impairment, corneal opacity, papillitis, retrobulbar optic neuritis, papilledema

Urogenital:glomerular nephritis, hematuria, hyperkalemia, interstitial nephritis, nephrotic syndrome, renal disease, renal failure, renal papillary necrosis, raised serum creatinine

Reproduction (female):infertility

In patients taking NSAIDs, the following adverse experiences have also been reported in <1% of patients.

Body as a Whole: fever infection, sepsis, anaphylactic reactions, appetite changes, death

Cardiovascular: hypertension, tachycardia, syncope, arrhythmia, hypotension, myocardial infarction

Gastrointestinal: dry mouth, esophagitis, gastric/peptic ulcers, gastritis, glossitis, eructation

Hepatobiliary: hepatitis, liver failure

Hemic and Lymphatic: rectal bleeding, lymphadenopathy, pancytopenia

Metabolic and Nutritional: weight changes

Nervous System: anxiety, asthenia, confusion, nervousness, paresthesia, somnolence, tremors, convulsions, coma, hallucinations

Respiratory: asthma, respiratory depression, pneumonia

Dermatologic: exfoliative dermatitis

Special Senses: blurred vision, conjunctivitis

Urogenital: cystitis, dysuria, oliguria/polyuria, proteinuria

Close

Let's block ads! (Why?)

NAPROXEN Tablet [REMEDYREPACK INC.]

BACKACHE RELIEF EXTRA STRENGTH (Magnesium Salicylate Tetrahydrate) Tablet [Walgreen Company]

Well at
Walgreens
WALGREENS PHARMACIST RECOMMENDEDǂ

NDC 0363-0338-08

EXTRA STRENGTH
Backache
Relief

Magnesium Salicylate
Tetrahydrate 580 mg /
Pain Reliever (NSAID)

 Relieves minor backache pain

24 CAPLETS

Compare to Extra Strength
Doan's® active ingredientǂǂ

TAMPER EVIDENT: DO NOT
USE IF CARTON IS OPENED
OR IF BLISTER UNIT IS TORN,
BROKEN OR SHOWS ANY
SIGNS OF TAMPERING

ǂWalgreens Pharmacist Survey Study,
November 2010.

ǂǂThis product is not manufactured or
distributed by Novartis Consumer
Health, Inc., owner of the registered
trademark Extra Strength Doan's®.
50844        ORG051233808

DISTRIBUTED BY: WALGREEN CO.
200 WILMOT RD., DEERFIELD, IL 60015

Walgreens
100% SATISFACTION GUARANTEED

walgreens.com     ©2012 Walgreen Co.

Walgreens 44-338

Walgeens 44-338


Close

Let's block ads! (Why?)

BACKACHE RELIEF EXTRA STRENGTH (Magnesium Salicylate Tetrahydrate) Tablet [Walgreen Company]

mercredi 2 novembre 2016

FOOT DETOX (Zinc Oxide) Patch [Sichuan Fragrant Plant Biotechnology Co, Ltd]

To receive this label RSS feed

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2e42zBe

To receive all DailyMed Updates for the last seven days

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2111Ptd

What will I get with the DailyMed RSS feed?

DailyMed will deliver notification of updates and additions to Drug Label information currently shown on this site through its RSS feed.

DailyMed will deliver this notification to your desktop, Web browser, or e-mail depending on the RSS Reader you select to use. To view updated drug label links, paste the RSS feed address (URL) shown below into a RSS reader, or use a browser which supports RSS feeds, such as Safari for Mac OS X.

How to discontinue the RSS feed

If you no longer wish to have this DailyMed RSS service, simply delete the copied URL from your RSS Reader.

More about getting RSS News & Updates from DailyMed

Let's block ads! (Why?)

FOOT DETOX (Zinc Oxide) Patch [Sichuan Fragrant Plant Biotechnology Co, Ltd]

CARMEX CLASSIC LIP BALM CHERRY SPF 15 (Octinoxate, Oxybenzone, Petrolatum) Salve [Carma Laboratories, Inc.]

To receive this label RSS feed

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2eBT5cj

To receive all DailyMed Updates for the last seven days

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2111Ptd

What will I get with the DailyMed RSS feed?

DailyMed will deliver notification of updates and additions to Drug Label information currently shown on this site through its RSS feed.

DailyMed will deliver this notification to your desktop, Web browser, or e-mail depending on the RSS Reader you select to use. To view updated drug label links, paste the RSS feed address (URL) shown below into a RSS reader, or use a browser which supports RSS feeds, such as Safari for Mac OS X.

How to discontinue the RSS feed

If you no longer wish to have this DailyMed RSS service, simply delete the copied URL from your RSS Reader.

More about getting RSS News & Updates from DailyMed

Let's block ads! (Why?)

CARMEX CLASSIC LIP BALM CHERRY SPF 15 (Octinoxate, Oxybenzone, Petrolatum) Salve [Carma Laboratories, Inc.]

METHYLPREDNISOLONE Tablet [Major Pharmaceuticals]

Fluid and Electrolyte Disturbances

Sodium retention

Congestive heart failure in susceptible patients

Hypertension

Fluid retention

Potassium loss

Hypokalemic alkalosis

Musculoskeletal

Muscle weakness

Loss of muscle mass

Vertebral compression fractures

Pathologic fracture of long bones

Tendon rupture, particularly of the Achilles tendon

Steroid myopathy

Osteoporosis

Aseptic necrosis of femoral and humeral heads

Gastrointestinal

Peptic ulcer with possible perforation and hemorrhage

Ulcerative esophagitis

Increases in alanine transaminase (ALT, SGPT), aspartate transaminase (AST, SGOT), and alkaline phosphatase have been observed following corticosteroid treatment. These changes are usually small, not associated with any clinical syndrome and are reversible upon discontinuation.

Pancreatitis

Abdominal distention

Dermatologic

Impaired wound healing

Petechiae and ecchymoses

May suppress reactions to skin tests

Thin fragile skin

Facial erythema

Increased sweating

Neurological

Increased intracranial pressure with papilledema (pseudo-tumor cerebri) usually after treatment

Convulsions

Vertigo

Headache

Endocrine

Development of Cushingoid state

Secondary adrenocortical and pituitary unresponsiveness, particularly in times of stress, as in trauma, surgery or illness

Menstrual irregularities

Decreased carbohydrate tolerance

Increased requirements of insulin or oral hypoglycemic agents in diabetics

Suppression of growth in children

Manifestations of latent diabetes mellitus

Ophthalmic

Posterior subcapsular cataracts

Glaucoma

Increased intraocular pressure

Exophthalmos

Metabolic

Negative nitrogen balance due to protein catabolism

The following additional reactions have been reported following oral as well as parenteral therapy:

Urticaria and other allergic, anaphylactic or hypersensitivity reactions.

Close

Let's block ads! (Why?)

METHYLPREDNISOLONE Tablet [Major Pharmaceuticals]

mardi 1 novembre 2016

ETHEREAL SKIN CALMING MOISTURIZING CREAM (Dimethicone) Cream [Donegal Bay Ltd]

Inactive Ingredients:

Water, Glycerin, Cetyl Palmitate, Mineral Oil, Colloidal Oatmeal, Caprylic/Capric Triglyceride, Octyldodecanol, Cetyl Alcohol, Glyceryl Stearate, PEG-40 Stearate,  Carbomer, Sodium Hydroxide, Phenoxyethanol, Benzyl Alcohol, Methylparaben, Propylparaben, DMDM Hydantoin

Close

Let's block ads! (Why?)

ETHEREAL SKIN CALMING MOISTURIZING CREAM (Dimethicone) Cream [Donegal Bay Ltd]

HYDROPHOR (Petrolatum) Ointment [Geritrex LLC]

Why is DailyMed no longer displaying pill images on the Search Results and Drug Info pages?

Due to inconsistencies between the drug labels on DailyMed and the pill images provided by RxImage, we no longer display the RxImage pill images associated with drug labels.

We anticipate reposting the images once we are able identify and filter out images that do not match the information provided in the drug labels.

Let's block ads! (Why?)

HYDROPHOR (Petrolatum) Ointment [Geritrex LLC]

METHOTREXATE Tablet [A-S Medication Solutions]

IN GENERAL, THE INCIDENCE AND SEVERITY OF ACUTE SIDE EFFECTS ARE RELATED TO DOSE AND FREQUENCY OF ADMINISTRATION. THE MOST SERIOUS REACTIONS ARE DISCUSSED ABOVE UNDER ORGAN SYSTEM TOXICITY IN THE PRECAUTION SECTION. THAT SECTION SHOULD ALSO BE CONSULTED WHEN LOOKING FOR INFORMATION ABOUT ADVERSE REACTIONS WITH METHOTREXATE.

The most frequently reported adverse reactions include ulcerative stomatitis, leukopenia, nausea, and abdominal distress. Other frequently reported adverse effects are malaise, undue fatigue, chills and fever, dizziness and decreased resistance to infection.

Other adverse reactions that have been reported with methotrexate are listed below by organ system. In the oncology setting, concomitant treatment and the underlying disease make specific attribution of a reaction to methotrexate difficult.

Alimentary System: gingivitis, pharyngitis, stomatitis, anorexia, nausea, vomiting, diarrhea, hematemesis, melena, gastrointestinal ulceration and bleeding, enteritis, pancreatitis.

Blood and Lymphatic System Disorders: suppressed hematopoiesis causing anemia, aplastic anemia, pancytopenia, leukopenia, neutropenia and/or thrombocytopenia, lymphadenopathy and lymphoproliferative disorders (including reversible). Hypogammaglobulinemia has been reported rarely.

Cardiovascular: pericarditis, pericardial effusion, hypotension, and thromboembolic events (including arterial thrombosis, cerebral thrombosis, deep vein thrombosis, retinal vein thrombosis, thrombophlebitis, and pulmonary embolus).

Central Nervous System: headaches, drowsiness, blurred vision, transient blindness, speech impairment including dysarthria and aphasia, hemiparesis, paresis and convulsions have also occurred following administration of methotrexate. Following low doses, there have been occasional reports of transient subtle cognitive dysfunction, mood alteration, unusual cranial sensations, leukoencephalopathy, or encephalopathy.

Hepatobiliary: disorders, hepatotoxicity, acute hepatitis, chronic fibrosis and cirrhosis, decrease in serum albumin, liver enzyme elevations.

Infection: There have been case reports of sometimes fatal opportunistic infections in patients receiving methotrexate therapy for neoplastic and non-neoplastic diseases. Pneumocystis carinii pneumonia was the most common opportunistic infection. There have also been reports of infections, pneumonia, sepsis, nocardiosis, histoplasmosis, cryptococcosis, herpes zoster, H. simplex hepatitis, and disseminated H. simplex.

Musculoskeletal System: stress fracture.

Ophthalmic: conjunctivitis, serious visual changes of unknown etiology.

Pulmonary System: respiratory fibrosis, respiratory failure, interstitial pneumonitis; deaths have been reported, and chronic interstitial obstructive pulmonary disease has occasionally occurred.

Skin: erythematous rashes, pruritus, urticaria, photosensitivity, pigmentary changes, alopecia, ecchymosis, telangiectasia, acne, furunculosis, erythema multiforme, toxic epidermal necrolysis, Stevens-Johnson Syndrome, skin necrosis, skin ulceration, and exfoliative dermatitis.

Urogenital System: severe nephropathy or renal failure, azotemia, cystitis, hematuria; defective oogenesis or spermatogenesis, transient oligospermia, menstrual dysfunction, vaginal discharge, and gynecomastia; infertility, abortion, fetal defects.

Other rarer reactions related to or attributed to the use of methotrexate such as nodulosis, vasculitis, arthralgia/myalgia, loss of libido/impotence, diabetes, osteoporosis, sudden death, reversible lymphomas, tumor lysis syndrome, soft tissue necrosis and osteonecrosis. Anaphylactoid reactions have been reported.

Adverse Reactions in Double-Blind Rheumatoid Arthritis Studies

The approximate incidences of methotrexate attributed (i.e., placebo rate subtracted) adverse reactions in 12 to 18 week double-blind studies of patients (n=128) with rheumatoid arthritis treated with low-dose oral (7.5 to 15 mg/week) pulse methotrexate, are listed below. Virtually all of these patients were on concomitant nonsteroidal anti-inflammatory drugs and some were also taking low dosages of corticosteroids. Hepatic histology was not examined in these short-term studies. (See PRECAUTIONS.)

Incidence greater than 10%:Elevated liver function tests 15%, nausea/vomiting 10%.

Incidence 3% to 10%:Stomatitis, thrombocytopenia, (platelet count less than 100,000/mm3).

Incidence 1% to 3%:Rash/pruritus/dermatitis, diarrhea, alopecia, leukopenia (WBC less than 3000/mm3), pancytopenia, dizziness.

Two other controlled trials of patients (n=680) with Rheumatoid Arthritis on 7.5 mg to 15 mg/wk oral doses showed an incidence of interstitial pneumonitis of 1%. (See PRECAUTIONS.)

Other less common reactions included decreased hematocrit, headache, upper respiratory infection, anorexia, arthralgias, chest pain, coughing, dysuria, eye discomfort, epistaxis, fever, infection, sweating, tinnitus, and vaginal discharge.

Adverse Reactions in Psoriasis

There are no recent placebo-controlled trials in patients with psoriasis. There are two literature reports (Roenigk, 1969 and Nyfors, 1978) describing large series (n=204, 248) of psoriasis patients treated with methotrexate. Dosages ranged up to 25 mg per week and treatment was administered for up to four years. With the exception of alopecia, photosensitivity, and “burning of skin lesions” (each 3% to 10%), the adverse reaction rates in these reports were very similar to those in the rheumatoid arthritis studies. Rarely, painful plaque erosions may appear.

Adverse Reactions in JRA Studies

The approximate incidences of adverse reactions reported in pediatric patients with JRA treated with oral, weekly doses of methotrexate (5 to 20 mg/m2/wk or 0.1 to 0.65 mg/kg/wk) were as follows (virtually all patients were receiving concomitant nonsteroidal anti-inflammatory drugs, and some also were taking low doses of cortico-steroids): elevated liver function tests, 14%; gastrointestinal reactions (e.g., nausea, vomiting, diarrhea), 11%; stomatitis, 2%; leukopenia, 2%; headache, 1.2%; alopecia, 0.5%; dizziness, 0.2%; and rash, 0.2%. Although there is experience with dosing up to 30 mg/m2/wk in JRA, the published data for doses above 20 mg/m2/wk are too limited to provide reliable estimates of adverse reaction rates.

Close

Let's block ads! (Why?)

METHOTREXATE Tablet [A-S Medication Solutions]

lundi 31 octobre 2016

BISOPROLOL FUMARATE Tablet [Preferred Pharmaceuticals, Inc.]

Safety data are available in more than 30,000 patients or volunteers. Frequency estimates and rates of withdrawal of therapy for adverse events were derived from two U.S. placebo-controlled studies.

In Study A, doses of 5, 10, and 20 mg bisoprolol fumarate were administered for 4 weeks. In Study B, doses of 2.5, 10, and 40 mg of bisoprolol fumarate were administered for 12 weeks. A total of 273 patients were treated with 5 to 20 mg of bisoprolol fumarate; 132 received placebo.

Withdrawal of therapy for adverse events was 3.3% for patients receiving bisoprolol fumarate and 6.8% for patients on placebo. Withdrawals were less than 1% for either bradycardia or fatigue/lack of energy.

The following table presents adverse experiences, whether or not considered drug related, reported in at least 1% of patients in these studies, for all patients studied in placebo-controlled clinical trials (2.5 to 40 mg), as well as for a subgroup that was treated with doses within the recommended dosage range (5 to 20 mg). Of the adverse events listed in the table, bradycardia, diarrhea, asthenia, fatigue, and sinusitis appear to be dose related.

The following is a comprehensive list of adverse experiences reported with bisoprolol fumarate in worldwide studies, or in postmarketing experience (in italics):

Central Nervous System

Dizziness, unsteadiness, vertigo, syncope, headache, paresthesia, hypoesthesia, hyperesthesia, somnolence, sleep disturbances, anxiety/restlessness, decreased concentration/memory.

Autonomic Nervous System

Dry mouth

Cardiovascular

Bradycardia, palpitations and other rhythm disturbances, cold extremities, claudication, hypotension, orthostatic hypotension, chest pain, congestive heart failure, dyspnea on exertion

Psychiatric

Vivid dreams, insomnia, depression.

Gastrointestinal

Gastric/epigastric/abdominal pain, gastritis, dyspepsia, nausea, vomiting, diarrhea, constipation, peptic ulcer

Musculoskeletal

Muscle/joint pain, arthralgia, back/neck pain, muscle cramps, twitching/tremor.

Skin

Rash, acne, eczema, psoriasis, skin irritation, pruritus, flushing, sweating, alopecia, dermatitis, angioedema, exfoliative dermatitis, cutaneous vasculitis

Special Senses

Visual disturbances, ocular pain/pressure, abnormal lacrimation, tinnitus, decreased hearing, earache, taste abnormalities.

Metabolic

Gout

Respiratory

Asthma/bronchospasm, bronchitis, coughing, dyspnea, pharyngitis, rhinitis, sinusitis, URI.

Genitourinary

Decreased libido/impotence, Peyronie's disease, cystitis, renal colic, polyuria.

Hematologic

Purpura.

General

Fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema.

In addition, a variety of adverse effects have been reported with other beta-adrenergic blocking agents and should be considered potential adverse effects of BISOPROLOL FUMARATE:

Central Nervous System

Reversible mental depression progressing to catatonia, hallucinations, an acute reversible syndrome characterized by disorientation to time and place, emotional lability, slightly clouded sensorium.

Allergic

Fever, combined with aching and sore throat, laryngospasm, respiratory distress.

Hematologic

Agranulocytosis, thrombocytopenia, thrombocytopenic purpura.

Gastrointestinal

Mesenteric arterial thrombosis, ischemic colitis.

Miscellaneous

The oculomucocutaneous syndrome associated with the beta-blocker practolol has not been reported with BISOPROLOL FUMARATE during investigational use or extensive foreign marketing experience.

Laboratory Abnormalities

In clinical trials, the most frequently reported laboratory change was an increase in serum triglycerides, but this was not a consistent finding.

Sporadic liver test abnormalities have been reported. In the U.S. controlled trials experience with bisoprolol fumarate treatment for 4-12 weeks, the incidence of concomitant elevations in SGOT and SGPT from 1 to 2 times normal was 3.9%, compared to 2.5% for placebo. No patient had concomitant elevations greater than twice normal.

In the long-term, uncontrolled experience with bisoprolol fumarate treatment for 6-18 months, the incidence of one or more concomitant elevations in SGOT and SGPT from 1 to 2 times normal was 6.2%. The incidence of multiple occurrences was 1.9%. For concomitant elevations in SGOT and SGPT of greater than twice normal, the incidence was 1.5%. The incidence of multiple occurrences was 0.3%. In many cases these elevations were attributed to underlying disorders, or resolved during continued treatment with bisoprolol fumarate.

Other laboratory changes included small increases in uric acid, creatinine, BUN, serum potassium, glucose, and phosphorus and decreases in WBC and platelets. These were generally not of clinical importance and rarely resulted in discontinuation of bisoprolol fumarate.

As with other beta-blockers, ANA conversions have also been reported on bisoprolol fumarate. About 15% of patients in long-term studies converted to a positive titer, although about one-third of these patients subsequently reconverted to a negative titer while on continued therapy.

Close

Let's block ads! (Why?)

BISOPROLOL FUMARATE Tablet [Preferred Pharmaceuticals, Inc.]

RAMIPRIL Capsule [DirectRX]

5.1 Anaphylactoid and Possibly Related Reactions

Presumably because drugs that act directly on the renin-angiotensin-aldosterone system (e.g., ACE inhibitors) affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving these drugs (including ramipril) may be subject to a variety of adverse reactions, some of them serious.

Angioedema

Head and Neck Angioedema

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor.

Angioedema of the face, extremities, lips, tongue, glottis, and larynx has been reported in patients treated with ACE inhibitors. Angioedema associated with laryngeal edema can be fatal. If laryngeal stridor or angioedema of the face, tongue, or glottis occurs, discontinue treatment with ramipril and institute appropriate therapy immediately. Where there is involvement of the tongue, glottis, or larynx likely to cause airway obstruction, administer appropriate therapy (e.g., subcutaneous epinephrine solution 1:1000 [0.3 mL to 0.5 mL]) promptly [see Adverse Reactions ( 6)].

In considering the use of ramipril, note that in controlled clinical trials ACE inhibitors cause a higher rate of angioedema in Black patients than in non-Black patients.

In a large U.S. postmarketing study, angioedema (defined as reports of angio, face, larynx, tongue, or throat edema) was reported in 3/1523 (0.20%) Black patients and in 8/8680 (0.09%) non-Black patients. These rates were not different statistically.

Patients taking concomitant mTOR inhibitor (e.g., temsirolimus) therapy may be at increased risk for angioedema [see Drug Interactions ( 7.7)].

Intestinal Angioedema

Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Include intestinal angioedema in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Anaphylactoid Reactions During Desensitization

Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent rechallenge.

Anaphylactoid Reactions During Membrane Exposure

Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.

5.2 Hepatic Failure and Impaired Liver Function

Rarely, ACE inhibitors, including ramipril, have been associated with a syndrome that starts with cholestatic jaundice and progresses to fulminant hepatic necrosis and sometimes death. The mechanism of this syndrome is not understood. Discontinue ramipril if patient develops jaundice or marked elevations of hepatic enzymes.

As ramipril is primarily metabolized by hepatic esterases to its active moiety, ramiprilat, patients with impaired liver function could develop markedly elevated plasma levels of ramipril. No formal pharmacokinetic studies have been carried out in hypertensive patients with impaired liver function.

5.3 Renal Impairment

As a consequence of inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with ACE inhibitors, including ramipril, may be associated with oliguria or progressive azotemia and rarely with acute renal failure or death.

In hypertensive patients with unilateral or bilateral renal artery stenosis, increases in blood urea nitrogen and serum creatinine may occur. Experience with another ACE inhibitor suggests that these increases would be reversible upon discontinuation of ramipril and/or diuretic therapy. In such patients, monitor renal function during the first few weeks of therapy. Some hypertensive patients with no apparent preexisting renal vascular disease have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when ramipril has been given concomitantly with a diuretic. This is more likely to occur in patients with preexisting renal impairment. Dosage reduction of ramipril and/or discontinuation of the diuretic may be required.

5.4 Neutropenia and Agranulocytosis

In rare instances, treatment with ACE inhibitors may be associated with mild reductions in red blood cell count and hemoglobin content, blood cell or platelet counts. In isolated cases, agranulocytosis, pancytopenia, and bone marrow depression may occur. Hematological reactions to ACE inhibitors are more likely to occur in patients with collagen-vascular disease (e.g., systemic lupus erythematosus, scleroderma) and renal impairment. Consider monitoring white blood cell counts in patients with collagen-vascular disease, especially if the disease is associated with impaired renal function.

5.5 Hypotension

General Considerations

Ramipril can cause symptomatic hypotension, after either the initial dose or a later dose when the dosage has been increased. Like other ACE inhibitors, ramipril, has been only rarely associated with hypotension in uncomplicated hypertensive patients. Symptomatic hypotension is most likely to occur in patients who have been volume- and/or salt-depleted as a result of prolonged diuretic therapy, dietary salt restriction, dialysis, diarrhea, or vomiting. Correct volume- and salt-depletion before initiating therapy with ramipril.

If excessive hypotension occurs, place the patient in a supine position and, if necessary, treat with intravenous infusion of physiological saline. Ramipril treatment usually can be continued following restoration of blood pressure and volume.

Heart Failure Post-Myocardial Infarction

In patients with heart failure post-myocardial infarction who are currently being treated with a diuretic, symptomatic hypotension occasionally can occur following the initial dose of ramipril. If the initial dose of 2.5 mg ramipril cannot be tolerated, use an initial dose of 1.25 mg ramipril to avoid excessive hypotension. Consider reducing the dose of concomitant diuretic to decrease the incidence of hypotension.

Congestive Heart Failure

In patients with congestive heart failure, with or without associated renal insufficiency, ACE inhibitor therapy may cause excessive hypotension, which may be associated with oliguria or azotemia and rarely, with acute renal failure and death. In such patients, initiate ramipril therapy under close medical supervision and follow patients closely for the first 2 weeks of treatment and whenever the dose of ramipril or diuretic is increased.

Surgery and Anesthesia

In patients undergoing surgery or during anesthesia with agents that produce hypotension, ramipril may block angiotensin II formation that would otherwise occur secondary to compensatory renin release. Hypotension that occurs as a result of this mechanism can be corrected by volume expansion.

5.6 Fetal Toxicity

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue ramipril as soon as possible [see Use in Specific Populations ( 8.1)].

5.7 Dual Blockade of the Renin-Angiotensin System

Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on ramipril and other agents that affect the RAS.

Telmisartan

The ONTARGET trial enrolled 25,620 patients > 55 years old with atherosclerotic disease or diabetes with end-organ damage, randomized them to telmisartan only, ramipril only, or the combination, and followed them for a median of 56 months. Patients receiving the combination of telmisartan and ramipril did not obtain any benefit compared to monotherapy, but experienced an increased incidence of clinically important renal dysfunction (death, doubling of serum creatinine, or dialysis) compared with groups receiving telmisartan alone or ramipril alone. Concomitant use of telmisartan and ramipril is not recommended.

Aliskiren

Do not coadminister aliskiren with ramipril in patients with diabetes. Avoid concomitant use of aliskiren with ramipril in patients with renal impairment (GFR < 60 mL/min/1.73 m2).

5.8 Hyperkalemia

In clinical trials with ramipril, hyperkalemia (serum potassium > 5.7 mEq/L) occurred in approximately 1% of hypertensive patients receiving ramipril. In most cases, these were isolated values, which resolved despite continued therapy. None of these patients were discontinued from the trials because of hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of potassium-sparing diuretics, potassium supplements, and/or potassium-containing salt substitutes, which should be used cautiously, if at all, with ramipril [see Drug Interactions ( 7.1)].

5.9 Cough

Presumably caused by inhibition of the degradation of endogenous bradykinin, persistent nonproductive cough has been reported with all ACE inhibitors, always resolving after discontinuation of therapy. Consider the possibility of angiotensin converting enzyme inhibitor induced-cough in the differential diagnosis of cough.

Let's block ads! (Why?)

RAMIPRIL Capsule [DirectRX]

CLINDAMYCIN (Clindamycin Phosphate) Injection, Solution, Concentrate [Alvogen Inc.]

If diarrhea occurs during therapy, this antibiotic should be discontinued. (See BOXED WARNING).

Adults

Parenteral (IM or IV Administration):

Serious infections due to aerobic gram-positive cocci and the more susceptible anaerobes (NOT generally including Bacteroides fragilis, Peptococcus species and Clostridium species other than Clostridium perfringens):

600 to 1200 mg/day in 2, 3 or 4 equal doses

More severe infections, particularly those due to proven or suspected Bacteroides fragilis, Peptococcus species, or Clostridium species other than Clostridium perfringens:

1200 to 2700 mg/day in 2, 3 or 4 equal doses

For more serious infections, these doses may have to be increased. In life threatening situations due to either aerobes or anaerobes these doses may be increased. Doses of as much as 4800 mg daily have been given intravenously to adults. See Dilution and Infusion Rates section below.

Single IM injections of greater than 600 mg are not recommended.

Alternatively, drug may be administered in the form of a single rapid infusion of the first dose followed by continuous IV infusion as follows:

Neonates (less than 1 month)

15 to 20 mg/kg/day in three to four equal doses. The lower dosage may be adequate for small prematures.

Pediatric patients (1 month of age to 16 years)

Parenteral (IM or IV) Administration: 20 to 40 mg/kg/day in 3 or 4 equal doses. The higher doses would be used for more severe infections. As an alternative to dosing on a body weight basis, pediatric patients may be dosed on the basis of square meters body surface: 350 mg/m2/day for serious infections and 450 mg/m2/day for more severe infections.

Parenteral therapy may be changed to clindamycin palmitate hydrochloride for oral solution or clindamycin hydrochloride capsules when the condition warrants and at the discretion of the physician.

In cases of β-hemolytic streptococcal infections, treatment should be continued for at least 10 days.

Dilution for IV Use and Infusion Rates

Clindamycin phosphate must be diluted prior to I.V. administration. The concentration of clindamycin in diluent for infusion should notexceed 18 mg per mL. Infusion rates should not exceed 30 mg per minute.

The usual infusion dilutions and rates are as follows:

Administration of more than 1200 mg in a 1-hour infusion is not recommended.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

Dilution and Compatibility

Physical and biological compatibility studies monitored for 24 hours at room temperature have demonstrated no inactivation or incompatibility with the use of clindamycin phosphate in IV solutions containing sodium chloride, glucose, calcium or potassium, and solutions containing vitamin B complex in concentrations usually used clinically. No incompatibility has been demonstrated with the antibiotics cephalothin, kanamycin, gentamicin, penicillin or carbenicillin.

The following drugs are physically incompatible with clindamycin phosphate: ampicillin sodium, phenytoin sodium, barbiturates, aminophylline, calcium gluconate, and magnesium sulfate.

The compatibility and duration of stability of drug admixtures will vary depending on concentration and other conditions.

Physico-Chemical Stability of Diluted Solutions of Clindamycin

Room temperature: 6, 9, and 12 mg/mL (equivalent to clindamycin base) in 5% Dextrose Injection, 0.9% Sodium Chloride Injection, or Lactated Ringer’s Injection in glass bottles or minibags, demonstrated physical and chemical stability for at least 16 days at 25°C. Also, 18 mg/mL (equivalent to clindamycin base) in 5% Dextrose Injection, in minibags, demonstrated physical and chemical stability for at least 16 days at 25°C.

Refrigeration: 6, 9 and 12 mg/mL (equivalent to clindamycin base) in 5% Dextrose Injection, 0.9% Sodium Chloride Injection, or Lactated Ringer’s Injection in glass bottles or minibags, demonstrated physical and chemical stability for at least 32 days at 4°C.

IMPORTANT: This chemical stability information in no way indicates that it would be acceptable practice to use this product well after the preparation time. Good professional practice suggests that compounded admixtures should be administered as soon after preparation as is feasible.

Frozen: 6, 9 and 12 mg/mL (equivalent to clindamycin base) in 5% Dextrose Injection, 0.9% Sodium Chloride Injection, or Lactated Ringer’s Injection in minibags demonstrated physical and chemical stability for at least eight weeks at -10°C.

Frozen solutions should be thawed at room temperature and not refrozen.

Close

Let's block ads! (Why?)

CLINDAMYCIN (Clindamycin Phosphate) Injection, Solution, Concentrate [Alvogen Inc.]

vendredi 28 octobre 2016

DIAZEPAM Tablet [Redpharm Drug, Inc.]

General If diazepam is to be combined with other psychotropic agents or anticonvulsant drugs, careful consideration should be given to the pharmacology of the agents to be employed - particularly with known compounds that may potentiate the action of diazepam, such as phenothiazines, narcotics, barbiturates, MAO inhibitors and other antidepressants (see Drug Interactions). The usual precautions are indicated for severely depressed patients or those in whom there is any evidence of latent depression or anxiety associated with depression, particularly the recognition that suicidal tendencies may be present and protective measures may be necessary. Psychiatric and paradoxical reactions are known to occur when using benzodiazepines (see ADVERSE REACTIONS). Should this occur, use of the drug should be discontinued. These reactions are more likely to occur in children and the elderly. A lower dose is recommended for patients with chronic respiratory insufficiency, due to the risk of respiratory depression. Benzodiazepines should be used with extreme caution in patients with a history of alcohol or drug abuse (see DRUG ABUSE AND DEPENDENCE). In debilitated patients, it is recommended that the dosage be limited to the smallest effective amount to preclude the development of ataxia or oversedation (2 mg to 2.5 mg once or twice daily, initially, to be increased gradually as needed and tolerated). Some loss of response to the effects of benzodiazepines may develop after repeated use of diazepam for a prolonged time. Information for Patients To assure the safe and effective use of benzodiazepines, patients should be informed that, since benzodiazepines may produce psychological and physical dependence, it is advisable that they consult with their physician before either increasing the dose or abruptly discontinuing this drug. The risk of dependence increases with duration of treatment; it is also greater in patients with a history of alcohol or drug abuse. Patients should be advised against the simultaneous ingestion of alcohol and other CNS-depressant drugs during diazepam therapy. As is true of most CNS-acting drugs, patients receiving diazepam should be cautioned against engaging in hazardous occupations requiring complete mental alertness, such as operating machinery or driving a motor vehicle. Drug Interactions Centrally Acting Agents If diazepam is to be combined with other centrally acting agents, careful consideration should be given to the pharmacology of the agents employed particularly with compounds that may potentiate or be potentiated by the action of diazepam, such as phenothiazines, antipsychotics, anxiolytics/sedatives, hypnotics, anticonvulsants, narcotic analgesics, anesthetics, sedative antihistamines, narcotics, barbiturates, MAO inhibitors and other antidepressants. Alcohol Concomitant use with alcohol is not recommended due to enhancement of the sedative effect. Antacids Diazepam peak concentrations are 30% lower when antacids are administered concurrently. However, there is no effect on the extent of absorption. The lower peak concentrations appear due to a slower rate of absorption, with the time required to achieve peak concentrations on average 20 to 25 minutes greater in the presence of antacids. However, this difference was not statistically significant. Compounds Which Inhibit Certain Hepatic Enzymes There is a potentially relevant interaction between diazepam and compounds which inhibit certain hepatic enzymes (particularly cytochrome P450 3A and 2C19). Data indicate that these compounds influence the pharmacokinetics of diazepam and may lead to increased and prolonged sedation. At present, this reaction is known to occur with cimetidine, ketoconazole, fluvoxamine, fluoxetine, and omeprazole. Phenytoin There have also been reports that the metabolic elimination of phenytoin is decreased by diazepam. Carcinogenesis, Mutagenesis, Impairment of Fertility In studies in which mice and rats were administered diazepam in the diet at a dose of 75 mg/kg/day (approximately 6 and 12 times, respectively, the maximum recommended human dose [MRHD = 1 mg/kg/day] on a mg/m basis) for 80 and 104 weeks, respectively, an increased incidence of liver tumors was observed in males of both species. The data currently available are inadequate to determine the mutagenic potential of diazepam. Reproduction studies in rats showed decreases in the number of pregnancies and in the number of surviving offspring following administration of an oral dose of 100 mg/kg/day (approximately 16 times the MRHD on a mg/m basis) prior to and during mating and throughout gestation and lactation. No adverse effects on fertility or offspring viability were noted at a dose of 80 mg/kg/day (approximately 13 times the MRHD on a mg/m basis). Pregnancy Teratogenic Effects Category D (see WARNINGS, Pregnancy). 2 2 2 Pediatric Us e Safety and effectiveness in pediatric patients below the age of 6 months have not been established. Geriatric Us e In elderly patients, it is recommended that the dosage be limited to the smallest effective amount to preclude the development of ataxia or oversedation (2 mg to 2.5 mg once or twice daily, initially to be increased gradually as needed and tolerated). Extensive accumulation of diazepam and its major metabolite, desmethyldiazepam, has been noted following chronic administration of diazepam in healthy elderly male subjects. Metabolites of this drug are known to be substantially excreted by the kidney, and the risk of toxic reactions may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. Hepatic Insufficiency Decreases in clearance and protein binding, and increases in volume of distribution and half-life has been reported in patients with cirrhosis. In such patients, a 2 to 5 fold increase in mean half-life has been reported. Delayed elimination has also been reported for the active metabolite desmethyldiazepam. Benzodiazepines are commonly implicated in hepatic encephalopathy. Increases in half-life have also been reported in hepatic fibrosis and in both acute and chronic hepatitis (see CLINICAL PHARMACOLOGY, Pharmacokinetics in Special Populations, Hepatic Insufficiency).

Close

Let's block ads! (Why?)

DIAZEPAM Tablet [Redpharm Drug, Inc.]

CVS HEALTH MULTI SYMPTOM SEVERE COLD MULTI SYMPTOM SEVERE COLD (Acetaminophen, Dextromethorphan Hbr, Phenylephrine Hcl) Powder, For Solution [CVS Pharmacy,Inc.]

CVS Health Multi-Symptom Severe Cold 6 packets

CVS Health

Compare to the active ingredients in Theraflu® Multi-Symptom Severe Cold*

Severe

NDC 59779-877-06

Multi-Symptom

Severe Cold

ACETAMINOPHEN

Pain reliever; Fever reducer

DEXTROMETHORPHAN HBr

Cough suppressant

PHENYLEPHRINE HCl

Nasal decongestant

Relieves:

Nasal congestion
Sore throat pain
Cough
Headache
Body ache
Fever

Green Tea & Honey Lemon Flavors

6 PACKETS

READ ALL WARNINGS AND DIRECTIONS ON CARTON BEFORE USE, KEEP CARTON FOR REFERENCE, DO NOT DISCARD,

Multi-Symptom Severe Cold

CVS Health™ Multi-Symptom Severe Cold provides complete relief of your severe cold symptoms. This soothing hot liquid formula is dye free, aspartame free and sodium free and tastes great.

For nighttime relief, try CVS Health™ Nighttime Severe Cough & Cold.

TAMPER EVIDENT INNER UNIT: DO NOT USE IF SEALED PACKET IS TORN OR BROKEN.

Dye, Aspartame, & Sodium free

Distributed by: CVS Pharmacy, Inc.

One CVS Drive, Woonsocket, RI 02895

©2015 CVS/pharmacy

CVS.com® 1-800-SHOP CVS

V-12431

CVS® Quality

Money back Guarantee

*This product is not manufactured or distributed by Novartis Consumer Health Inc., distributor of Theraflu® Multi-Symptom Severe Cold

Close

Let's block ads! (Why?)

CVS HEALTH MULTI SYMPTOM SEVERE COLD MULTI SYMPTOM SEVERE COLD (Acetaminophen, Dextromethorphan Hbr, Phenylephrine Hcl) Powder, For Solution [CVS Pharmacy,Inc.]

DEXAMETHASONE SODIUM PHOSPHATE Injection, Solution [A-S Medication Solutions]

This product, like many other steroid formulations, is sensitive to heat. Therefore, it should not be autoclaved when it is desirable to sterilize the exterior of the vial.

Following prolonged therapy, withdrawal of corticosteroids may result in symptoms of the corticosteroid withdrawal syndrome including fever, myalgia, arthralgia, and malaise. This may occur in patients even without evidence of adrenal insufficiency.

There is an enhanced effect of corticosteroids in patients with hypothyroidism and in those with cirrhosis.

Corticosteroids should be used cautiously in patients with ocular herpes simplex for fear of corneal perforation.

The lowest possible dose of corticosteroid should be used to control the condition under treatment, and when reduction in dosage is possible, the reduction must be gradual.

Psychic derangements may appear when corticosteroids are used, ranging from euphoria, insomnia, mood swings, personality changes, and severe depression to frank psychotic manifestations. Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids.

Aspirin should be used with caution in conjunction with corticosteroids in hypoprothrombinemia.

Steroids should be used with caution in nonspecific ulcerative colitis, if there is a probability of impending perforation, abscess, or other pyogenic infection, also in diverticulitis, fresh intestinal anastomoses, active or latent peptic ulcer, renal insufficiency, hypertension, osteoporosis, and myasthenia gravis. Signs of peritoneal irritation following gastrointestinal perforation in patients receiving large doses of corticosteroids may be minimal or absent. Fat embolism has been reported as a possible complication of hypercortisonism.

When large doses are given, some authorities advise that antacids be administered between meals to help prevent peptic ulcer.

Growth and development of infants and children on prolonged corticosteroid therapy should be carefully followed.

Steroids may increase or decrease motility and number of spermatozoa in some patients.

Phenytoin, phenobarbital, ephedrine, and rifampin may enhance the metabolic clearance of corticosteroids, resulting in decreased blood levels and lessened physiologic activity, thus requiring adjustment in corticosteroid dosage. These interactions may interfere with dexamethasone suppression tests which should be interpreted with caution during administration of these drugs.

False negative results in the dexamethasone suppression test (DST) in patients being treated with indomethacin have been reported. Thus, results of the DST should be interpreted with caution in these patients.

The prothrombin time should be checked frequently in patients who are receiving corticosteroids and coumarin anticoagulants at the same time because of reports that corticosteroids have altered the response to these anticoagulants. Studies have shown that the usual effect produced by adding corticosteroids is inhibition of response to coumarins, although there have been some conflicting reports of potentiation not substantiated by studies.

When corticosteroids are administered concomitantly with potassium depleting diuretics, patients should be observed closely for development of hypokalemia.

Intra-articular injection of a corticosteroid may produce systemic as well as local effects.

Appropriate examination of any joint fluid present is necessary to exclude a septic process.

A marked increase in pain accompanied by local swelling, further restriction of joint motion, fever, and malaise is suggestive of septic arthritis. If this complication occurs and the diagnosis of sepsis is confirmed, appropriate antimicrobial therapy should be instituted.

Injection of a steroid into an infected site is to be avoided.

Corticosteroids should not be injected into unstable joints.

Patients should be impressed strongly with the importance of not overusing joints in which symptomatic benefit has been obtained as long as the inflammatory process remains active.

Frequent intra-articular injection may result in damage to joint tissues.

The slower rate of absorption by intramuscular administration should be recognized.

Information for Patients

Susceptible patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles. Patients should also be advised that if they are exposed, medical advice should be sought without delay.

Close

Let's block ads! (Why?)

DEXAMETHASONE SODIUM PHOSPHATE Injection, Solution [A-S Medication Solutions]

jeudi 27 octobre 2016

AXE SIGNATURE FOREST ANTIPERSPIRANT (Aluminum Zirconium Tetrachlorohydrex Gly) Stick [Conopco, Inc. D/B/A/ Unilever]

AXE SIGNATURE FOREST ANTIPERSPIRANT- aluminum zirconium tetrachlorohydrex gly stick

To receive this label RSS feed

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2flpoR5

To receive all DailyMed Updates for the last seven days

Copy the URL below and paste it into your RSS Reader application.

http://ift.tt/2111Ptd

What will I get with the DailyMed RSS feed?

DailyMed will deliver notification of updates and additions to Drug Label information currently shown on this site through its RSS feed.

DailyMed will deliver this notification to your desktop, Web browser, or e-mail depending on the RSS Reader you select to use. To view updated drug label links, paste the RSS feed address (URL) shown below into a RSS reader, or use a browser which supports RSS feeds, such as Safari for Mac OS X.

How to discontinue the RSS feed

If you no longer wish to have this DailyMed RSS service, simply delete the copied URL from your RSS Reader.

More about getting RSS News & Updates from DailyMed

Let's block ads! (Why?)

AXE SIGNATURE FOREST ANTIPERSPIRANT (Aluminum Zirconium Tetrachlorohydrex Gly) Stick [Conopco, Inc. D/B/A/ Unilever]

DOVE ADVANCED CARE LAVENDER FRESH 48H ANTIPERSPIRANT (Aluminum Zirconium Tetrachlorohydrex Gly) Stick [Conopco Inc. D/B/A/ Unilever]

Cyclopentasiloxane, Stearyl Alcohol, C12-15 Alkyl Benzoate, PPG-14 Butyl Ether, Hydrogenated Castor Oil, PEG-8, Fragrance (Parfum), Dimethicone, Silica, Polyethylene, Helianthus Annuus (Sunflower) Seed Oil, Steareth-100, BHT, Hydroxyethyl Urea.

Close

Let's block ads! (Why?)

DOVE ADVANCED CARE LAVENDER FRESH 48H ANTIPERSPIRANT (Aluminum Zirconium Tetrachlorohydrex Gly) Stick [Conopco Inc. D/B/A/ Unilever]

BENAZEPRIL HYDROCHLORIDE Tablet [DIRECT RX]

General

Impaired Renal Function: As a consequence of inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible individuals. In patients with severe congestive heart failure whose renal function may depend on the activity of the renin-angiotensin-aldosterone system, treatment with angiotensin-converting enzyme inhibitors, including benazepril HCl, may be associated with oliguria and/or progressive azotemia and (rarely) with acute renal failure and/or death. In a small study of hypertensive patients with renal artery stenosis in a solitary kidney or bilateral renal artery stenosis, treatment with benazepril HCl was associated with increases in blood urea nitrogen and serum creatinine; these increases were reversible upon discontinuation of benazepril HCl or diuretic therapy, or both. When such patients are treated with ACE inhibitors, renal function should be monitored during the first few weeks of therapy. Some hypertensive patients with no apparent preexisting renal vascular disease have developed increases in blood urea nitrogen and serum creatinine, usually minor and transient, especially when benazepril HCl has been given concomitantly with a diuretic. This is more likely to occur in patients with preexisting renal impairment. Dosage reduction of benazepril HCl and/or discontinuation of the diuretic may be required. Evaluation of the hypertensive patient should always include assessment of renal function (see DOSAGE AND ADMINISTRATION).

Hyperkalemia: In clinical trials, hyperkalemia (serum potassium at least 0.5 mEq/L greater than the upper limit of normal) occurred in approximately 1% of hypertensive patients receiving benazepril HCl. In most cases, these were isolated values which resolved despite continued therapy. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of potassium-sparing diuretics, potassium supplements, and/or potassium-containing salt substitutes, which should be used cautiously, if at all, with benazepril HCl (see Drug Interactions).

Cough:

Presumably due to the inhibition of the degradation of endogenous bradykinin, persistent nonproductive cough has been reported with all ACE inhibitors, always resolving after discontinuation of therapy. ACE inhibitor-induced cough should be considered in the differential diagnosis of cough.

Surgery/Anesthesia: In patients undergoing surgery or during anesthesia with agents that produce hypotension, benazepril will block the angiotensin II formation that could otherwise occur secondary to compensatory renin release. Hypotension that occurs as a result of this mechanism can be corrected by volume expansion.

Information for Patients

Pregnancy: Female patients of childbearing age should be told about the consequences of exposure to benazepril HCl during pregnancy. Discuss treatment options with women planning to become pregnant. Patients should be asked to report pregnancies to their physicians as soon as possible.

Angioedema: Angioedema, including laryngeal edema, can occur at any time with treatment with ACE inhibitors. Patients should be so advised and told to report immediately any signs or symptoms suggesting angioedema (swelling of face, eyes, lips, or tongue, or difficulty in breathing) and to take no more drug until they have consulted with the prescribing physician.

Symptomatic Hypotension: Patients should be cautioned that lightheadedness can occur, especially during the first days of therapy, and it should be reported to the prescribing physician. Patients should be told that if syncope occurs, benazepril HCl should be discontinued until the prescribing physician has been consulted.

All patients should be cautioned that inadequate fluid intake or excessive perspiration, diarrhea, or vomiting can lead to an excessive fall in blood pressure, with the same consequences of lightheadedness and possible syncope.

Hyperkalemia: Patients should be told not to use potassium supplements or salt substitutes containing potassium without consulting the prescribing physician.

Neutropenia: Patients should be told to promptly report any indication of infection (e.g., sore throat, fever), which could be a sign of neutropenia.

Drug Interactions

Diuretics: Patients on diuretics, especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with benazepril HCl. The possibility of hypotensive effects with benazepril HCl can be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with benazepril HCl. If this is not possible, the starting dose should be reduced (see DOSAGE AND ADMINISTRATION).

Potassium Supplements and Potassium-Sparing Diuretics: Concomitant use with benazepril HCl may effect potassium levels. Monitor potassium periodically.

Oral Anticoagulants: Interaction studies with warfarin and acenocoumarol failed to identify any clinically important effects on the serum concentrations or clinical effects of these anticoagulants.

Lithium: Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors (including benazepril) during therapy with lithium. Monitor lithium levels when used concomitantly with benazepril HCl.

Gold: Nitritoid reactions (symptoms include facial flushing, nausea, vomiting and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy.

Anti-diabetics: In rare cases, diabetic patients receiving an ACE inhibitor (including benazepril) concomitantly with insulin or oral anti-diabetics may develop hypoglycemia. Such patients should therefore be advised about the possibility of hypoglycemic reactions and should be monitored accordingly.

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors): In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, co-administration of NSAIDs, including selective COX-2 inhibitors, with ACE inhibitors, including benazepril, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving benazepril and NSAID therapy.

The antihypertensive effect of ACE inhibitors, including benazepril, may be attenuated by NSAIDs.

Dual Blockade of the Renin-Angiotensin System (RAS): Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypertension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function and electrolytes in patients on benazepril HCl and other agents that affect the RAS.

Do not co-administer aliskiren with benazepril HCl in patients with diabetes. Avoid use of aliskiren with benazepril HCl in patients with renal impairment (GFR <60 ml/min).

Other:

Benazepril HCl has been used concomitantly with beta-adrenergic-blocking agents, calcium-channel-blocking agents, diuretics, digoxin, and hydralazine, without evidence of clinically important adverse interactions. Benazepril, like other ACE inhibitors, has had less than additive effects with beta-adrenergic blockers, presumably because both drugs lower blood pressure by inhibiting parts of the renin-angiotensin system.

The pharmacokinetics of benazepril are not affected by the following drugs: hydrochlorothiazide, furosemide, chlorthalidone, digoxin, propranolol, atenolol, nifedipine, amlodipine, naproxen, acetylsalicylic acid, or cimetidine. Likewise the administration of benazepril does not substantially affect the pharmacokinetics of these medications (cimetidine kinetics were not studied).

Carcinogenesis, Mutagenesis, Impairment of Fertility

No evidence of carcinogenicity was found when benazepril was administered to rats and mice for up to two years at doses of up to 150 mg/kg/day. When compared on the basis of body weights, this dose is 110 times the maximum recommended human dose. When compared on the basis of body surface areas, this dose is 18 and 9 times (rats and mice, respectively) the maximum recommended human dose (calculations assume a patient weight of 60 kg). No mutagenic activity was detected in the Ames test in bacteria (with or without metabolic activation), in an in vitro test for forward mutations in cultured mammalian cells, or in a nucleus anomaly test. In doses of 50 to 500 mg/kg/day (6 to 60 times the maximum recommended human dose based on mg/m2 comparison and 37 to 375 times the maximum recommended human dose based on a mg/kg comparison), Benazepril HCl had no adverse effect on the reproductive performance of male and female rats.

Nursing Mothers

Minimal amounts of unchanged benazepril and of benazeprilat are excreted into the breast milk of lactating women treated with benazepril. A newborn child ingesting entirely breast milk would receive less than 0.1% of the mg/kg maternal dose of benazepril and benazeprilat.

Geriatric Use

Of the total number of patients who received benazepril in U.S. clinical studies of benazepril HCl, 18% were 65 or older while 2% were 75 or older. No overall differences in effectiveness or safety were observed between these patients and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

Benazepril and benazeprilat are substantially excreted by the kidney. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Pediatric Use

Neonates with a history of in utero exposure to benazepril HCl:

If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function. Benazepril, which crosses the placenta, can theoretically be removed from the neonatal circulation by these means; there are occasional reports of benefit from these maneuvers with another ACE inhibitor, but experience is limited.

The antihypertensive effects of benazepril HCl have been evaluated in a double-blind study in pediatric patients 7 to 16 years of age (see CLINICAL PHARMACOLOGY: Pharmacodynamics,Hypertension). The pharmacokinetics of benazepril HCl have been evaluated in pediatric patients 6 to 16 years of age (see CLINICAL PHARMACOLOGY: Pharmacokinetics and Metabolism). Benazepril HCl was generally well tolerated and adverse effects were similar to those described in adults. (See ADVERSE REACTIONS: Pediatric Patients). The long-term effects of benazepril on growth and development have not been studied. Infants below the age of 1 year should not be given benazepril HCl because of the risk of effects on kidney development.

Treatment with benazepril HCl is not recommended in pediatric patients less than 6 years of age (see ADVERSE REACTIONS), and in children with glomerular filtration rate <30 mL/min as there are insufficient data available to support a dosing recommendation in these groups. (See CLINICAL PHARMACOLOGY: Pharmacokinetics and Metabolism,In Pediatric Patients and DOSAGE AND ADMINISTRATION.)

Let's block ads! (Why?)

BENAZEPRIL HYDROCHLORIDE Tablet [DIRECT RX]